Annual precipitation data processing and interpolation for the weather stations of Western Ukraine

Alexander Mkrtchian,

PhD, Associate professor, Lviv national Ivan Franko university, Ukraine

Study area

Task: to create accurate and reliable map of average annual precipitation distribution based on available data

Problem points:

✓ sparse network of weather stations (separated by tens of km)

- discontinuous observation series, different stations having non-overlapping observation periods
- ✓ data are often classified, hardly accessible or expensive, often only exists in "paper" form
- researchers often lack funds to access chargeable data and proprietary software

Data source:

Global Historical Climatology Network (GHCN):

Online weather data archives: https://www.ncdc.noaa.gov http://www.ecad.eu

Peterson, Thomas C. and Russell S. Vose (1997). An overview of the Global Historical Climatology Network temperature data base. Bulletin of the American Meteorological Society 78 (12): 2837–2849

Total data consists of **33512** daily observations of precipitation on **50** weather stations, for the period of 1924 - 2011 yrs.

Selected for the analysis: **3432** observations . Selection criteria:

• 1961-1990 period

daily data availability for all 50 weather stations

Data file example

-	•
EUROPEAN CLIMATE AS THESE DATA CAN BE US	SESSMENT & DATASET (ECA&D), file created on 03-02-2016 SED FREELY PROVIDED THAT THE FOLLOWING SOURCE IS ACKNOWLEDGED
Visin Tank AMC and Co	Southers 2002 Daily detect of 20th contury surface
Nein Tank, A.W.G. and Co	authors, 2002. Daily dataset of 20th-century sunace
air lemperature and precip	itation series for the European Climate Assessment.
Inc. J. Of Climatol., 22, 1441	- 1403.
Data and metadata availab	le al nip.//www.ecad.eu
FILE FORMAT (MISSING	VALUE CODE IS -9999):
01-06 STAID: Station ident	ifier
08-13 SOUID: Source ider	ntifier
15-22 DATE : Date YYYYI	MMDD
24-28 RR : precipitation a	imount in 0.1 mm
30-34 Q_RR : Quality code	e for RR (0='valid'; 1='suspect'; 9='missing')
This is the series (SOUID:	103621) of UKRAINE, BEREGOVO (STAID: 1528)
See file sources.txt for more	e info.
STAID, SOUID, DATE,	RR, Q_RR
1528,103621,19460801,	0, 0
1528,103621,19460802,	0, 0
1528,103621,19460803,	0, 0
1528,103621,19460804,	0, 0
1528,103621,19460805,	0. 0
1528,103621,19460806.	0. 0
1528,103621,19460807.	0. 0
1528,103621,19460808.	0. 0
1528,103621,19460809.	0. 0
1528 103621 19460810	0 0
1528 103621 19460811	0.0
1528 103621 19460812	0,0
1528 103621 19460813	0.0
1528 103621 19460814	0000 0
1528 103621 19460815	0.0
1528 103621 19460816	25 0
1529,103621,13400010,	20, 0
1528 103621 10460818	0, 0
1529,103621,13400010,	0000 0
1528 103621 10460930	0000 0
1528 103621 10460820	5 0
1520,103021,19400821,	0, 0
1020,103021,19400822,	70 0
1528,103021,19400823,	19, 0
1528,103021,19460824,	0, 0
1528,103621,19460825,	138, U
1528,103621,19460826,	-9999, 9

Primary processing of climatic data in R

```
lf <- list.files()</pre>
b = data.frame()
for (fname in lf) {
    a <- read.csv (fname, skip=21)</pre>
    a < -a[, -c(1, 2, 5)]
    fn <- substr (fname, 1, (nchar(fname)-4))</pre>
    colnames(a)[2] <- fn
    a[which(a[[fn]] == -9999), fn] <- NA
    if (nrow(b)==0) {
        b <- a
    } else {
        b <- merge (b,a, all = TRUE)</pre>
    }
}
rm(a)
b$year <- substr (b$DATE, 1,4)
b$month <- substr (b$DATE, 5,6)
b$day <- substr (b$DATE, 7,8)
b$DATE <- NULL
b <- b[c(51:53, 1:50)]
obsm <- tapply (b$RR, b$month, function (x) (sum(!is.na(x)))
temp1 <- by(a[, 4:53], a$month, function (x) sapply (x, sum))
temp2 <- do.call(rbind, temp1)</pre>
temp3 <- temp2 * dm / obsm
temp4 <- as.data.frame(temp3)</pre>
pr an <- sapply(temp4, sum)</pre>
```


Annual precipitation interpolated by ordinary kriging

Meteostations Predicted annual precipitation, mm

Predicted RMSE of interpolation by ordinary kriging (mm²)

Study area terrain (absolute elevation)

Meteostations Elevation 100 350 600 900 1400

Source of terrain data: SRTM data V4, available from http://srtm.csi.cgiar.org

200 km

Terrain Aspect factor (NW-SE, r = 50.4 km)

Terrain Roughness factor

Legend

2

200

200 km

Meteostations
 Terrain roughness index

Multiple regression model

Residual standard error: 65.83 on 44 degrees of freedom Multiple R-squared: 0.9383, Adjusted R-squared: 0.9313 F-statistic: 133.9 on 5 and 44 DF, p-value: < 2.2e-16

Regression model parameters

Terrain characteristic	Moving km	circle	r,	Regression model parameters		
				Coeff.	t value	Pr(> t)
Terrain elevation	-			0.3	4.83	1.7e-05
Terrain roughness	7.2			2.1	8.3	1.5e-10
Aspect factor NW/SE	36			-1.2	-2.75	0.0086
Aspect factor NW/SE	50.4			1.68	4.31	9e-05
Aspect factor W/E	36			0.16	2.81	0.0074

Model output:

Residual standard error: 65.83 on 44 degrees of freedomMultiple R-squared: 0.9383,Adjusted R-squared: 0.9313F-statistic: 133.9 on 5 and 44 DF, p-value: < 2.2e-16</td>

Shapiro-Wilk normality test of residuals:

W = 0.98597, p-value = 0.8125

Validity testing of regression model

Annual precipitation interpolated by multiple regression model

Predicted RMSE of interpolation by multiple regression model (mm^2)

Cross-validation of interpolation results

(by krige.cv {gstat}, leave-one-out cross validation)

Annual precipitation variance, mm²:

Initial	After ordinary kriging	After regression modeling	
63096	22856 (36,2%)	6087(9,6%)	

General workflow

Prospective ways of refining the interpolation (directions of further research)

Data refining

- utilizing rain gauges data (higher spatial density, however usually short and interrupted series, more prone to errors, inadequate georeferencing)
- utilizing data from neighboring countries (requires cross-border harmonization)
- advanced methods for dealing with discontinuous observation series (automatic completion of missing data, correction for gaps and inhomogeneities in data series)

Model refining

- incorporating additional explanatory variables, connected with terrain attributes as well as land cover character
- engaging more sophisticated statistical and geostatistical models
- advanced methods for dealing with scaling and finding the optimal spatial scale for dependent variables
- engaging theoretical models that explicate processes of precipitation formation and redistribution

MODIS 500m 16 days NDVI

Processing and geostatistical interpolation of annual precipitation data for western part of Ukraine

Alexander Mkrtchian, PhD

Associate professor, Lviv national Ivan Franko university

alemkrt@gmail.com