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Study area 

Study area: ~156 thousand sq. km  

Includes 8 first rank administrative regions of Ukraine (totally) 

and another 2 (partially) 



Task: to create accurate and reliable map of 
average annual precipitation distribution based on 
available data 

 
Problem points: 

 
 sparse network of weather stations (separated by tens of km) 

 discontinuous observation series, different stations having 
non-overlapping observation periods 

 data are often classified, hardly accessible or expensive, often 
oŶlǇ eǆists iŶ ͞paper͟ forŵ 

 researchers often lack funds to access chargeable data and 
proprietary software   



Data source: 
 

Global Historical Climatology Network (GHCN):  

 

Online weather data archives: 

https://www.ncdc.noaa.gov 

http://www.ecad.eu 

 

 

Peterson, Thomas C. and Russell S. Vose (1997). An overview of 

the Global Historical Climatology Network temperature data 

base. Bulletin of the American Meteorological Society 78 (12): 

2837–2849 

Total data consists of 33512 daily observations of precipitation 

on 50 weather stations, 

for the period of 1924 - 2011 yrs.  

Selected for the analysis: 3432 observations . 

Selection criteria:  

 1961-1990 period 

 daily data availability for all 50 weather stations 

 

Data file example 



lf <- list.files() 

b = data.frame() 

for (fname in lf) { 

    a <- read.csv (fname, skip=21) 

    a <- a[ ,-c(1,2,5)] 

    fn <- substr (fname, 1, (nchar(fname)-4)) 

    colnames(a)[2] <- fn 

    a[which(a[[fn]] == -9999), fn] <- NA 

    if (nrow(b)==0) { 

        b <- a 

    } else { 

        b <- merge (b,a, all = TRUE) 

    } 

} 

rm(a)   

b$year <- substr (b$DATE, 1,4) 

b$month <- substr (b$DATE, 5,6) 

b$day <- substr (b$DATE, 7,8) 

b$DATE <- NULL 

b <- b[c(51:53, 1:50)] 

 

Primary processing of climatic data in R 

obsm <- tapply (b$RR, b$month, function (x) (sum(!is.na(x))) 

temp1 <- by(a[, 4:53], a$month, function (x) sapply (x, sum)) 

temp2 <- do.call(rbind, temp1) 

temp3 <- temp2 * dm / obsm 

temp4 <- as.data.frame(temp3) 

pr_an <- sapply(temp4, sum) 

 



Precipitation data variogram 

Fitted variogram parameters  

(exponential model): 

 

nugget 30000 mm2, 

partial sill 66000 mm2, 

range 468 km  



Annual precipitation interpolated by ordinary kriging 



Predicted RMSE of interpolation by ordinary kriging (mm^2) 



Source of terrain data: 

SRTM data V4, 

available from 

http://srtm.csi.cgiar.org 

Study area terrain (absolute elevation) 



Terrain Aspect factor (NW-SE, r = 50.4 km)  



Terrain Roughness factor 



Multiple regression model 



Terrain characteristic Moving circle r, 

km 

Regression model parameters 

Coeff. t value Pr(>|t|) 

Terrain elevation - 0.3 4.83 1.7e-05 

Terrain roughness 7.2 2.1 8.3 1.5e-10 

Aspect factor NW/SE 36 -1.2  -2.75 0.0086 

Aspect factor NW/SE 50.4 1.68 4.31 9e-05 

Aspect factor W/E 36 0.16 2.81 0.0074 

Regression model parameters 

Model output: 

Residual standard error: 65.83 on 44 degrees of freedom 

Multiple R-squared:  0.9383, Adjusted R-squared:  0.9313  

F-statistic: 133.9 on 5 and 44 DF,  p-value: < 2.2e-16 

Shapiro-Wilk normality test of residuals: 

W = 0.98597, p-value = 0.8125 



Variogram of regression residuals 

Validity testing of regression model 



Annual precipitation interpolated by multiple regression model 



Predicted RMSE of interpolation by multiple regression model (mm^2) 



Cross-validation of interpolation results 
(by krige.cv {gstat}, leave-one-out cross validation) 

 

Simple kriging Multiple regression 

Initial After ordinary kriging After regression modeling 

63096 22856 (36,2%) 6087(9,6%) 

Annual precipitation variance, mm2: 



asdDEM and derived 

attributes
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Raster()

R object,

 "SpatialPointsDataFrame"
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General workflow 



Prospective ways of refining the interpolation (directions of further research) 

 

Data refining 

• utilizing rain gauges data (higher spatial density, however usually short and interrupted 

series, more prone to errors, inadequate georeferencing) 

• utilizing data from neighboring countries (requires cross-border harmonization) 

• advanced methods for dealing with discontinuous observation series (automatic 

completion of missing data, correction for gaps and inhomogeneities in data series) 

 

Model refining 

• incorporating additional explanatory variables, connected with terrain attributes as well 

as land cover character 

• engaging more sophisticated statistical and geostatistical models   

• advanced methods for dealing with scaling and finding the optimal spatial scale for 

dependent variables 

• engaging theoretical models that explicate processes of precipitation formation and 

redistribution 

 

 



MODIS 500m 16 days NDVI 
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