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 Time series analysis is an old 

concept in remote sensing but 

something has changed … 

 

 Demand for global data sets 

 Opening up of satellite data archives 

 Free and open data policy 

 Open source movement 

 Cloud computing 

 Computer literacy 

 Big Data 

 

 Remote sensing time series analysis 

is suddenly a hot topic again! 



Why are Time Series so Important? 

 

 

Gain Process Understanding 

 

 

Calibrate Remote Sensing Models 



Remote Sensing Model Formulation, 

Calibration & Retrieval  



Remote Sensing Models & Retrieval Approaches 

Forward Model

Y=f(X)

Inversion

X=g(Y)

Object

Parameters X

Sensor

Observables Y

Empirical models 

 Semi-empirical models 

  Theoretical models 

  Lookup tables and neural networks 

 Least-square matching 

Direct inversion 



Why Model Calibration is Needed 

 No model is all-encompassing  Calibration is needed 

 

 

 

 

 

 

 

 

 

“All natural systems models are to some degree lumped, and use effective 

parameters to characterize these spatial-temporal processes.”  
Jasper Vrugt http://math.lanl.gov/~vrugt/research/ 



Calibration Procedure 

 The TU Wien processing architecture allows for calibration 

• Per-pixel calibration is done - as far as possible - just based on historic 

satellite time series 

• Auxiliary data are used for calibrating model parameters 

 



Retrieval Procedure 

 Retrieval can be performed in near-real-time and off-line 

 

 

 

 

 

 

 

 

 Several algorithms can be 

used in parallel 



Big Data Infrastructures 



Exponentially Growing Data Volumes 



Big Data Infrastructures for the Sentinels 

 Private Sector 

• Google Earth Engine 

• Amazon Web Services 

– Offers Landsat data (complete from 2015 onwards) for its cloud user  

• Helix Nebula Science Cloud 

– Consortium of European ICT providers teaming up with ESA, CERN, etc. 

• etc. 

 Public Sector 

• Initiatives trigged mainly by national space programmes 

– THEIA Land Data Centre (France) 

– Climate, Environment and Monitoring from Space (CEMS) (UK) 

– OPUS/Copernicus Centre (Germany) 

• European Space Agency 

– Thematic Exploitation Platforms 

– Mission Exploitation Platforms 

• etc. 



Google Earth Engine 

 Premier platform for the scientific analysis of high-resolution imagery 

• Combines the strength of an ICT giant with expertise in earth observation 

• Rolled out on at least three Google data centres (US, Europe, Asia) 

• Access through Java Script or Python API 

• Programming in “Googlish”, i.e. code can only run on Google Earth Engine 

• Image-oriented data structure, including image pyramids for interactive 

analysis 

• Commercial usage is possible 

• Data download possible (original and processed data) 

– Landsat: complete archive 

– MODIS: many geophysical variables 

– Sentinel-1 

– Sentinel-2 



Snapshot of Google Earth Engine Interface showing Sentinel-1 

data holding as of 4/9/2015 (https://ee-api.appspot.com) 



Earth Observation Data Centre 

 EODC works together with its partners from science, the public- and the 

private sectors in order to foster the use of EO data for monitoring of 

water and land 

 Central Goals 

• Bring users and their software to the data 

• Organise cooperation & enable specialisation 

 Joint developments 

• Cloud infrastructure 

• Operational data services 

• Software 

– Open Source 

 Processing of Big Data 

• From satellite raw data over EO data products up to model forecasts 

• Focus on European Satellites with high temporal coverage 

– Sentinel-1, Sentinel-2, etc. 



EODC Infrastructure in Vienna 

24/7 Operations 

& Rolling Archive 

Petabyte-Scale 

Disk Storage 
2-3 Petabyte (mid-2016) 

Supercomputer 

Tape Storage 

Virtual Machines 

(VMs) 

VSC-3 Rank 85 of the World„s most 

powerful computers (11/2014) 



Sentinel-1 



Sentinel-1 – A Game Changer 

 C-band SAR satellite in 

continuation of ERS-1/2 and 

ENVISAT 

 High spatio-temporal coverage 

• Spatial resolution 20-80 m 

• Temporal resolution < 3 days 

over Europe and Canada 

– with 2 satellites 

 Excellent data quality 

 Highly dynamic land surface 

processes can be captured 

• Impact on water management, 

health and other applications 

could be high if the challenges 

in the ground segment can be 

overcome 

Solar panel and SAR antenna of Sentinel-1 

launched 3 April 2014. Image was acquired by 

the satellite's onboard camera. © ESA 



Sentinel-1 Data Availability @ EODC 

Up-to-date coverage maps available from https://www.eodc.eu/sentinel-1a-coverage-maps/ 



Sentinel-1 Image of Upper 

Austria taken on 13/04/2015 



Sentinel-1 Time Series 

2014-11-08 2014-12-14 2015-01-07 2015-01-19 2015-01-31 2015-02-12 

2015-02-24 2015-03-08 2015-03-20 2015-04-01 2015-04-13 2015-04-25 

2015-05-02 2015-05-19 2015-05-31 2015-06-04 2015-06-12 2015-06-23 



Sentinel-1 Cross-Pol (VH) Images 

Red – June 

Green – July 

Blue – August 

 

False-colour image of Sentinel-1 

VH monthly image mosaics 
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Global Grid System for Time Series Processing 

• Equidistant azimuthal 

projection 

• Fast parallel processing 

• Optimized data formatting 

• Fast access in time and 

spatial domain 

• Efficient data archiving 

Equi7 Grid 
Bauer-Marschallinger et al (2014) 

Optimisation of global grids for high-

resolution remote sensing data, 

Computers & Geosciences, 72, 84-93. 



Sentinel-1 Pre-Processing Chain 

Geo-coding is done 

with ESA‟s Sentinel-1 

Toolbox (S1TBX) 



Supercomputing Experiments 

 Vienna Scientific Cluster 3 

• High-performance computing (HPC) system with 2020 nodes 

• Each node has 2 processors Intel Xeon E5-2650v2, 2.6 GHz, and 64 Gbytes 

of RAM 

• Simple Linux Utility for Resource Management (SLURM) 

 First experiment conducted on VSC-3 in 2015 

• Geocoding of 624 Sentinel-1 images from Austria, Sudan and Zambia with 

Sentinel-1 toolbox 

• Each image is about 1 Gbyte in size 

• Serial processing with one processor would take about two weeks 

 Approach 

• Parallel processing on 312 nodes whereas 2 images were simultaneously 

launched on a single computing node 

 Results 

• Processing was completed within 45 min (without queuing) 

 



Test n. 1 n. 2 n. 3  n. 4 

SAR product mode ASAR GM ASAR WS ASAR WS S-1 IW GRDH 

Spatial resolution 1 km 150 m 150 m 20 m 

Total number of data files 189,621 31,199 31,199 1,075 

Number of images for job / Total 

Number of jobs 
8 / 23,703 2 / 15,600 2 / 15,600 1 / 1,075 

Input data file size range 1 - 73 MB 12 - 692 MB 12 - 692 MB 0.8 – 1.7 GB 

Total input data files size 1.579 TB 5.401 TB 5.401 TB 1.2 TB 

Max. number of simultaneous 

running nodes 
417 454 612 396 

Number of cores used by Sentinel-1 

Toolbox 
4 8 8 8 

Input data caching on node False False True True 

Output data caching on node True True True True 

Averaged processing time 

(seconds/MB) 
9.18 5.65 2.39 2.69 

Elapsed time including SLURM 

queueing 
≈ 3.5 days ≈ 4 days ≈ 8 hours ≈ 3.5 hours 

Estimated elapsed time using only 1 

node 
≈ 167 days ≈ 353 days ≈ 353 days ≈ 37 days 

Elefante et al. (2016) High-performance computing for soil moisture 

estimation, BiDS‟2016, EUR 27775 EN, 95-98. 



Forest Mapping 



Forest Area from Sentinel-1 Time Series 

 10m forest area map of Eastern Burgenland, Austria 

 Statistical parameters from the multi-temporal VV 

and VH data (1-12-2014 to 31-03-2015) 

 Thresholding approach (Otsu algorithm) and 

K-means clustering 

 Validation with forest area map from ALS data: 

Overall accuracy 92%, kappa statistic 0.81 

Dostalova et al. (2016) Forest Area Derivation from Sentinel-1 Data, 

ISPRS Annals, 227-233. 



Seasonal Backscatter Signal over Forest 

Coniferous forest Deciduous forest 

Potential for  

forest type 

classification 

Dostalova et al. (2016) Influence of Forest Structure on the Sentinel-1 Backscatter 

Variation – Analysis with Full-waveform LiDAR Data, LPS 2016, Prague. 

False-colour composite of 

Sentinel-1 VH 12-day image 

mosaics: 

 

Red: 10th-21st January 2015 

Green: 3rd-14th June 2015 

Blue: 4th-15th May 2016 



Forest Type Classification 
False-colour composite of Sentinel-1 VH 

12-days averages 

20m forest type map based on yearly 

seasonality of Sentinel-1 time series 

Copernicus HRL 20m Forest type (2012) 

Copernicus HRL Forest type map source: 

http://land.copernicus.eu/pan-european/high-resolution-layers/forests 



Rice Mapping 



Nguyen, D.B., A. Gruber, W. 

Wagner (2016) Mapping rice extent 

and cropping scheme in the 

Mekong Delta using Sentinel-1A 

data, Remote Sensing Letters, in 

revision. 



Backscatter Signature of Rice Fields 

Nguyen, D.B., A. Gruber, W. Wagner (2016) Mapping rice extent and cropping scheme in the 

Mekong Delta using Sentinel-1A data, Remote Sensing Letters, in revision. 



Nguyen, D., K. Clauss, S. Cao, V. 

Naeimi, C. Kuenzer, W. Wagner 

(2015). Mapping Rice Seasonality 

in the Mekong Delta with Multi-

Year Envisat ASAR WSM Data, 

Remote Sensing, 7, 15808-15893. 

Single-, Double- and Triple-Cropped Rice Areas 



Rice Areas in Mekong River Delta 

http://www.esa.int/spaceinimages/ 



Wetland Mapping 



Harmonic Analysis of SAR Time Series 

Red: Average backscatter 

Green: Amplitude of first harmonic term 

Blue: Phase of first harmonic term 

Schlaffer, S., M. Chini, D. Dettmering, W. Wagner (2016) Mapping Wetlands in Zambia Using Seasonal 

Backscatter Signatures Derived from ENVISAT ASAR Time Series, Remote Sensing, 8(5), 402, 24 p. 



Schlaffer, S., M. Chini, D. Dettmering, W. 

Wagner (2016) Mapping Wetlands in 

Zambia Using Seasonal Backscatter 

Signatures Derived from ENVISAT ASAR 

Time Series, Remote Sensing, 8(5), 402, 

24 p. 



Sentinel-1 Wetland Mapping Algorithm 

The Wetland mapping processor relies on 6 workflows 

 

 Pre-processing of Level-1 SAR data  

 TU Wien model parameters calculations 

 Surface Soil Moisture retrieval  

 Inundation/water mapping  

 Statistical parameters calculation 

 Wetland identification 

 

SAR raw L1 
ENVISAT ASAR WS

Sentinel-1 IW GRDH 

SAR Preprocessed 
Data

(75m, 10m Equi7 grids)

Pre-processing

Backscatter 
Scaling

Scaled Sigma 
Database

Flood Mapping

Flood maps 
Database

Parameter 
Retrieval

Parameter 
Database

Wetland identification

FLDFQ
Flood frequency

LDMSSIG 
Scaled SIG of 

Last Dry Month

PWATER
Permanent water

Wetland map
(75m, 10m Equi7 grid)

0 Dryland

1 Permanent water

2 Permanently wet area (MNSSM > %80)

3 Temporary wet area

4 Permanently flooded area (FLDFQ > %20)

5 Temporary flooded area (FLDFQ > %5)

6 flooded vegetation

254 Unknown/Masked

255 No Data

MN30 
Mean of σ(30°)

Landcover
ROIs

Stastistical 
Analysis

Statistical 
Analysis

FDMSSIG 
Scaled SIG  of 

First Dry Month

SSM retrieval

SSM Database

Stastistical 
Analysis

MNSSM 
Mean of SSM

Classification results: 

Dryland 

Permanent water 

Permanent wet 

Temporarily wet 

Frequent flooding 

Intermittent flooding 

High wetland vegetation 

Unknown/Masked 

No data 



Lake Neusiedl (Sentinel-1 2014-2016) 



Soil Moisture Monitoring 



Backscatter Model for Vegetated Soil Surfaces 

 TU Wien model motivated by physical 

models and empirical evidence 

• Formulated in decibels (dB) domain 

• Linear relationship between backscatter 

(in dB) and soil moisture 

• Empirical description of incidence angle 

behaviour 

• Seasonal vegetation effects cancel each 

other out at the "cross-over angles" 

– dependent on soil moisture 

 

ERS Scatterometer 

measurements 

Incidence angle behaviour 

is determined by vegetation 

and roughness roughness 

Changes due to soil 

moisture variations 



Functional Behaviour 

 The TU Wien backscatter model mimics a semi-empirical backscatter 

model with a strong surface-volume interaction term 

Mixing model with fraction of 

non-transparent (nt) and 

transparent (tr) vegetation 

 

Bare soil scattering 𝑠
0   

modelled with Improved Integral 

Equation Method I2EM 

 

Interaction term enhances soil 

moisture contributions 
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Surface Soil Moisture Change Detection 
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Sentinel-1 Surface Soil Moisture 

A) Sentinel-1 SSM product, 2015-04-05 05:1:15 

B) Monthly average of SSM, February 

C) Monthly average of SSM, April. 



20 m Sentinel-1 Soil Moisture Index on 2014-11-08 

Precipitation map 16:45 UTC 
http://www.meteox.com 

Water bodies 

Dense vegetation 

Surface Soil Moisture (%) 



20 m Sentinel-1 Soil Moisture Index on 2015-05-02 

Surface Soil Moisture (%) 

Precipitation map 16:45 UTC 
http://www.meteox.com 

Water bodies 

Dense vegetation 



Conclusions 

 Sentinel-1 data are of excellent quality 

• Global coverage variable 

 Data cubes for supporting time series processing and analysis 

• Model calibration 

• Process understanding 

 Sentinel-1 will serve operational monitoring of 

• Soil moisture, water bodies, wetlands, forest area, etc. 

 But working with Sentinel-1 data is not easy 

• Big data volume 

• Complex algorithms 

 

A platform for scientific 

collaboration, joint software 

developments and 

supercomputing 
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