Automated global soil mapping:
discovering spatial soil patterns using
machine learning
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Software outsourcing to Eastern Europe:
Which countries work best?

Eastern Europe is building up a head of steam as a software outsourcing
powerhouse, as companies focus more on cost-effectiveness and proximity,
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SOILGRIDS [Faas

A system for automated global soil mapping

World Soil Information

www.soilgrids.org ~—




Automated (predictive) global soil mapping

We aims at implementing (all) knowledge of soil
science through robust algorithms (BUP), and
putting the system in operational use..

so that you do not need any soil mappers any
more :)
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S0ilGridsTkm — Global Soil Information Based on Automated Mapping
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Discussion Soils are widely recognized as a non-renewable natural resource and as biophysical carbon ' Ll

sinks. As such, there is a growing requirement for global soil information. Although several : !
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global soil information systems already exist, these tend to suffer from inconsistencies and
Author Contributions limited spatial detail. Deserts
References 2 e o R
Methodology/Principal Findings Forecasting
‘Remote sensing
Reader Comments (0) We present SoilGrids1km — a global 3D soil information system at 1 km resolution — :
Figures containing spatial predictions for a selection of soil properties (at six standard depths): soil _-'5“"’3*-"\‘-'“!?9"’3‘1"&'_
organic carbon (g kg-1), soil pH, sand, silt and clay fractions (%), bulk density (kg m-23), cation- T
g (g kg—1), soil pH, sand, y (%), y (kg m=3), ey

exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha-1), depth _
to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our Urban areas

predictions are based on global spatial prediction models which we fitted, per soil variable,




SoilGrids250m: global gridded soil information based on Machine
Learning
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Abstract. This paper describes the technical development and accuracy assessment of the most recent and improved version of
the SoilGrids system at 250 m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil
properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments)
at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution
of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total).
Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates
(primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology
maps), which were used to fit an ensemble of machine learning methods — random forest and gradient boosting and/or

multinomial logistic regression — as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold
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Uncertainty in soil data can outweigh climate
Impact signals in global crop yield simulations
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Global gridded crop models (GGCMs) are increasingly used for agro-environmental
assessments and estimates of climate change impacts on food production. Recently, the
influence of climate data and weather variability on GGCM outcomes has come under detailed
scrutiny, unlike the influence of soil data. Here we compare yield variability caused by the soil
type selected for GGCM simulations to weather-induced yield variability. Without fertilizer
application, soil-type-related yield variability generally outweighs the simulated inter-annual
variability in yield due to weather. Increasing applications of fertilizer and irrigation reduce this
variability until it is practically negligible. Importantly, estimated climate change effects on yield
can be either negative or positive depending on the chosen soil type. Soils thus have the

' capacity to either buffer or amplify these impacts. Our findings call for improvements in sail
data available for crop modelling and more explicit accounting for soil variability in GGCM
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Global Soil Information Facilities

SoilGrids

Global Soil
Information
Facilities

ISRIC

\ 4
Query soll data

= Dominant, 2" and 39 soll type
= Nutrient status (e.g. soll organic carbon stock)

Soillnfo App '
= Soll property-depth curves (with confidence
’ e Intervals)

Spatial

; : = Avallable water capacity
location (site)

=  Current and past land use

GPS-enabled mobile phone = Closest soil data provider / agricultural
extension service



SoilGrids inputs

-> "World's largest” compilation of soil profile / soil
sample data sets (national and international datasets
from over 45 countries) — these contain both soil
classification data + soil analytical/laboratory data.

=> A 40TB repository of MODIS land products, climatic
images, DEM derivatives, geological and
geomorphological data (all at 250 m resolution)

=> |SRIC's international network that can cross-check
and validate spatial prediction patterns / values.
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ca 150,000 points shown on this map

>850,000 measurements of soill
organic carbon




Machine learning




National soll Regional soil Remote sensing data

profile DB \ / profile DB repositories
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Some common misconceptions

-=> MLA is a black box — it is notl

=> Most of new implementations of random forest and
similar will penalize for overfitting.

-> MLA is non-statistical / there are no probabilities and
the output (prediction) uncertainty is unknown — it is
not true. "MLA is a marriage between stats and
knowledge representation”
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Watch out from overfitting
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“Sweetheart, my neural net
predicts that you and | are
28.9% compatible.
Will you be my Valentine?”
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test error vs. ensemble size
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Figure 1: The black curve shows how Err; varies as a function of ¢ for a particular realization of
(21, ...,Q¢. The red curve was obtained by generating many ensembles, and computing the average
of the respective Err; values at each t. Similarly, the blue curves depict the 10th and 90th percentiles
Df Errf at each .
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Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

1.

Statistics starts with data. Think of the data as
being generated by a black box in which a vector of

input variables x

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.

INTRODUCTION The values of the parameters are estimated from

(independent variables) go in one this:

the data and the model then used for information
and/or prediction. Thus the black box is filled in like

side, and on the other side the response variables y linear regression

come out. Inside the black box, nature functions to

Y logistic regression

associate the predictor variables with the response Cox model

variables, so the picture is like this:

y 4+

nature

tests and residual examination.
X

Model validation. Yes—no using goodness-of-fit

Estimated culture population. 98% of all statisti-



TECH TITANS  ARTIFICIAL INTELLIGENCE STARTUPS WARSTORIES POLITICS

— “The tagline is, Do you want to be =

a machine learning ninja?” says
m # Christine Robson, a product
# manager for Google’s internal
machine learning efforts, who

helps administer the program.
D0 YOU WANT : -
Tu EE H “So we invite folks from around

Google to come and spend six

MHEHINE months embedded with the
LEHHNINE machine learning team, sitting
NINJH" right next to a mentor, working

on machine learning for six

months, doing some project,

= getting it launched and learning a lot.”
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MLAs of interest to global
soil mapping
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Some logical choices

-> Soils vary locally (there is a strong local component)
— tree-based models probably more suited.

-> Soils are shaped as a result of complex processes
running over large periods of time... but there are also
sudden disturbances (soil slides, erosion)... in short:
soil genesis is complex.

-> Remote sensing (VISNIR) can not be used to directly
map soils, BUT it can be used to represent soil
forming factors.

, oG World Soil Information




Proposed solution:

-> An extensive stack of carefully selected
covariates (158)

=>» Random forest + Gradient boosting

=> Put more effort to optimize the system
so that it can be updated relatively fast
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Publications

* Wright, M. N., Ziegler, A. & Konig, I. R. (2016). Do little interactions get lost in dark random forests? BMC Bioinformatics 17:145. http://dx.doi.org/10.1186/512859-016-0095-8.

« Wright, M. N. & Ziegler, A. (2016). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, in
press. http://arxiv.org/abs/1508.04400.

« Schirmer, 1. H., Wright, M. N., Vonthein, R., Herrmann, K., Ndlle. B., Both, M., Henes, F., Arlt, A., Gross, W. L., Schinke, S., Reinhold-Keller, E., Moosig, F. & Holle, J. U.
(2016). Clinical presentation and long-term outcome of 144 patients with microscopic polyanagiitis in a monocentric German cohort. Rheumatelogy (Oxford) 55:71-79.
http://dx.doi.org/10.1093/rheumatology/kev286.

« Wright, M. N. & Ziegler, A. (2015). Multiple censored data in dentistry: A new statistical model for analyzing lesion size in randomized controlled trials. Biometrical Journal 57:384-
394, http://dx.doi.org/10.1002/bimj.201400118.

+« Paulick, C., Wright, M. N., Verleger, R. & Keller, K. (2014). Decomposition of 3-way arrays: A comparison of different PARAFAC algorithms. Chemometrics and Intefligent Laboratory
Systems 137:97-109. http://dx.doi.org/10.1016/j.chemolab.2014.06.009.

Technical Reports

« Schmid, M., Wright, M. N. & Ziegler, A. (2015). On the Use of Harrell's C for Node Splitting in Random Survival Forests. Technical Report. http://arxiv.org/abs/1507.03092,

>850,000 measurements of soil
organic carbon




ranger: A Fast Implementation of Random Forests
for High Dimensional Data in C++4 and R

Marvin N. Wright Andreas Ziegler
Universitit zu Liibeck Universitiit zu Lilbeck,
University of KwaZulu-Natal

Abstract

We introduce the C++ application and R package ranger. The software is a fast
implementation of random forests for high dimensional data. Ensembles of classification,
regression and survival trees are supported. We describe the implementation, provide
examples, validate the package with a reference implementation, and compare runtime
and memory usage with other implementations. The new software proves to scale best
with the number of features, samples, trees, and features tried for splitting. Finally, we

show that ranger iz the fastest and most memory efficient implementation of random
forests to analyze data on the scale of a genome-wide association study.

Keywords: C4+4, classification, machine learning, R, random forests, Repp, recursive parti-
tioning, survival analysis.
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Host Competitions Datasets Scripts Jobs Community - Sign up Login

g8 Understanding XGBoost Model on Otto Da... 100

voters —

by Tiangi Chen - last run 11 months ago - R notebook - 44107 views
using data from Otto Group Product Classification Challenge

Report Code Output (1) Comments (5) Log Versions (10) Forks (70) m

Report

- otto group

Understanding XGBoost Model on Otto
Dataset

Michaél Benesty

1 Intreduction

2 Preparation of the data
3 Model training

4 Model understanding

L= TR - BN - I - )

o 4.1 Feature importance
o 4.2 Interpretation
o 4.3 Tree graph

-]

5 Going deeper

1 Introduction

il

XGBoost is an implementation of the famous gradient boosting algorithm. This model is often described as a
blackbox, meaning it works well but it is not trivial to understand how. Indeed, the model is made of hundreds
(thousands?) of decision trees. You may wonder how possible a human would be able to have a general view
of the model?

a0 TSR, -



XGBoost: A Scalable Tree Boosting System

Tiangi Chen

University of Washington
tqgchen@cs.washington.edu

Carlos Guestrin
University of Washington
guestrin@cs.washington.edu

many applications. Tree boosting has been shown to give
state-of-the-art results on many standard classification bench-
marks [14]. LambdaMART [4], a variant of tree boosting for
ranking, achieves state-of-the-art result for ranking prob-
lems. Besides being used as a stand-alone predictor. it is
also incorporated into real-world production pipelines for ad
click through rate prediction [13]. Finally, it is the de-facto
choice of ensemble method and is used in challenges such as
the Netflix prize [2].

In this paper, we describe XGBoost, a scalable machine
learning system for tree boosting. The system is available as
an open source package”. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions * published at Kaggle's
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-

o el % L 1 a1 T

O ABSTRACT
— Tree boosting is a highly effective and widely used machine
o learning method. In this paper, we describe a scalable end-
] to-end tree hoosting system called XGBoost, which is used
g widely by data scientists to achieve state-of-the-art results
3 on many machine learning challenges. We propose a novel
z sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
N we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
E By combining these insights. XGBoost scales beyond billions
J of examples using far fewer resources than existing systems.
—
o CCS Concepts
i eMethodologies — Machine learning; eInformation
systems — Data mining;
—
—  Keywords

]
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Journal of Statistical Software

November 2008, Volume 28, Issue 5. http: /fwww. jstatsoft. org/

Building Predictive Models in R Using the
caret Package

Max Kuhn
Phizer Global R&D

Abstract

The caret package, short for classification and regression training, contains numerous
tools for developing predictive models using the rich set of models available in R. The
package focuses on simplifying model training and tuning across a wide variety of modeling
techniques. It also includes methods for pre-processing training data, calculating variable
importance, and model visualizations. An example from computational chemistry is used
to illustrate the functionality on a real data set and to benchmark the benefits of parallel
processing with several types of models.

.
= -

e
[ e P

Keywords: model building, tuning parameters, parallel processing, R, Net WorkSpaces.
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 Figure 6. Examples of fitted relationships for bulk density (above), pH (middle) and soil organic carbon (below). Plots show target variables

and top three most important covariates as reported by the random forest model. DEFTH. £ is the depth from soil surface, TO9MOD3 is mean
monthly temperature for September, TMDMOD3 is mean annual temperature, PRSMRG3 is total annual precipitation, M04M0D4 is mean monthly

ODIS NIR band reflectance, POTMRG3 is mean monthly precipitation for July, TO1M0D3 is mean monthly temperature for January, and
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Figure 5. Fitted variable importance plots for target variables. Generated as an average between using the ranger and xgboost packages,

(for soil types results are based on the ranger model only). DEPTH. £ is the depth from soil surface, T#*M0OD3 and N#+*M0OD3 are mean

monthly temperatures daytime and nighttime (red color), TWI1, DEM, VBF and VDP are DEM-parameters (bisque color), M*+M0D4 are mean
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Figure 2. Example of soil variable-depth curves: original sampled soil profiles vs predicted values (SoilGrids) at seven standard depths (bro-
ken red line) and estimated soil organic carbon stock for depths 0—~100 and 100-200 ¢cm. Locations of points: mineral soil S1991CA055001

(-122.37°W, 38.25°N), and an organic soil profile S2012CA067002 (-121.62°W, 38.13°N).
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Conclusions




Conclusions

-=> Traditional soil surveyors got it rightl — distribution
of soil classes is mainly controlled by DEM
morphometry (especially hydrological parameters).

=> Soil classification and polygon models of soils seem
to make sense — in many parts of the world we see
"soil groupings i.e. soil bodies”... but there are also
transition zones and small individual patches... so it is
really a hybrid that we need.

=> |n the machine learning framework, much more time
needs to be spent on preparing data
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