Extension of linear 3D trend models of soil variables

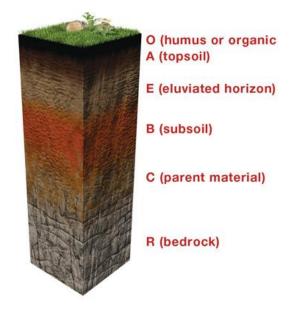
by using penalized interaction models

Milutin Pejović

3D soil mapping

Soil mapping in 3D is a natural extension of commonly used 2D soil mapping.

Producing maps of soil properties related to different soil depth.


Soil mapping in 3D space (2D+depth) was recognized as one of the main methodological challenge facing the developers of statistical soil models.

What is needed? 3D soil data

Soil data are often consists of samples collected from many locations at several different depths.

3D data (longitude, latitude and depth)

Environmental variables (Soil forming factors)

Most work in digital soil mapping is based on building a statistical model relating field soil observations and environmental variables.

From a geostatistical point of view, it can be considered as a trend.

This is the point where soil mapping and machine learning techniques are facing each other.


Lack of environmental covariates known in 3D space largely limits the development of 3D trend models of soil properties.

Environmental variables, like DEM, DEM derivates, satellite images, are relate to soil surface not to depth.

How to find the 3D model which describes both the lateral as well as vertical deterministic variation?

Benchmark model

Linear two-component 3D model

Lateral and vertical components have very distinct role in model!

Extension of 3D linear model

Extending the 3D model by:

- Polynomial expansion of depth term
- Inclusion of interactions between spatial covariates and depth

$$\mu(\mathbf{s}, d) = \beta_0 + \sum_{i=1}^n \beta_i \mathbf{x}_i(\mathbf{s}) + \sum_{j=1}^3 \sum_{i=1}^n \theta_{ji} \mathbf{x}_i(\mathbf{s}) d^j$$

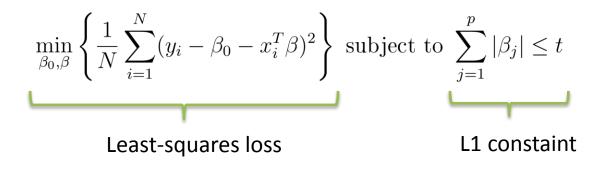
Deeper understanding of relationships between environmental variables and modeled variable!

Model is flexible!

Number of predictors arises by considering the interactions.

Hierarchy principle:

interaction effect should have nonzero parameter value only if the both (strong hierarchy) or at least one (weak hierarchy) of the main effects has a nonzero parameter value. Which variables along with associated interactions should be included in the model?


How to ensure the hierarchical principle?

Whether and in what extent the extension of linear 3D trend models improves the two-component 3D model? To use stepwise regression or best subset selection

To use common t-test to select important main effects and then iteratively to select the important interaction effects

Multi-stages processes computationally very demanding!

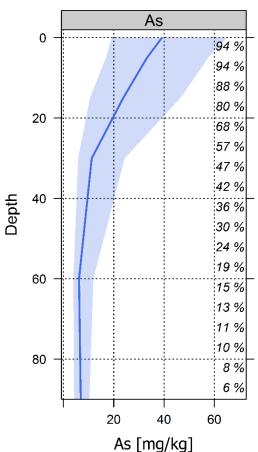
Lasso is the computationally attractive one-step approach for parameter estimation and variable selection.

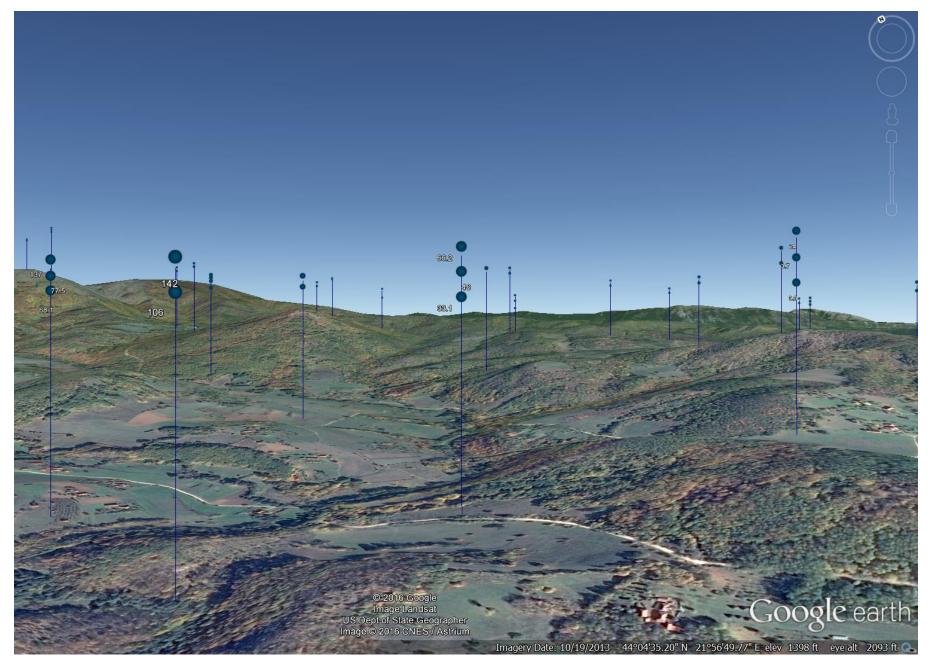
Sparse solution!

LASSO for hierarchical interactions Bien et al. (2013)

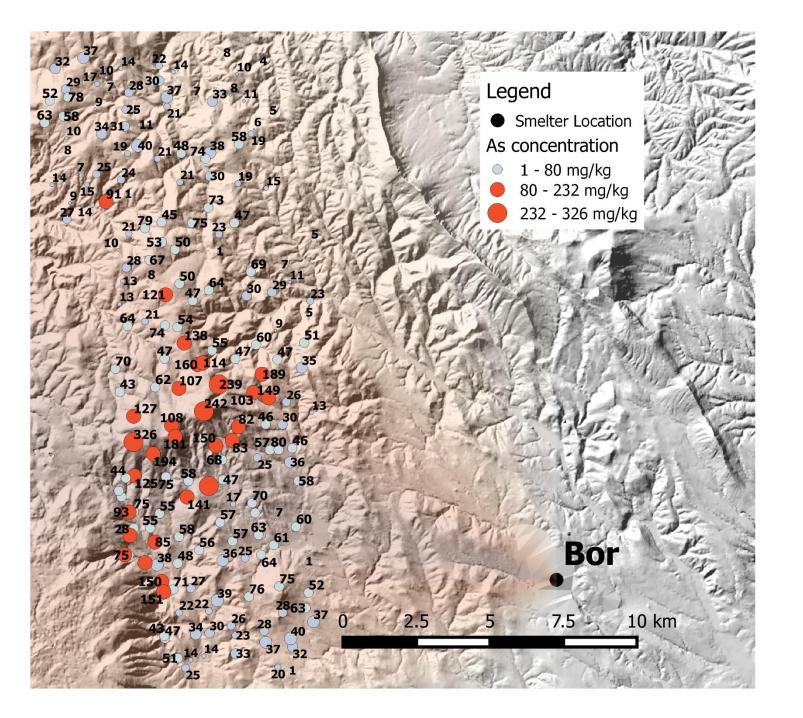
Software:

Two R packages were used:


- glmnet extremely efficient fitting procedure
- *hierNet lasso for hierarchial interactions*


Case study

200 soil profiles with more than 450 observations of Arsenic concentration.


Data are collected in vicinity of copper mining complex in Bor in Serbia

Area: 10x20 km

plotKML (Hengl et.al. 2014)

	Name	Predictor Name	Source	Range	Type		
	Terrain Attributes						
	Digital Elevation Model	DEM		300-1045	С		
	Aspect	Aspect		0-6.283	\mathbf{C}		
	Slope	Slope		1 - 1.027	\mathbf{C}		
	Topographic Wetness Index	TŴI		2.077 - 21.751	\mathbf{C}		
	Convergence Index	ConvInd		-97.5 - 94.4	\mathbf{C}		
	Cross Sectional Curvature	CrSectCurv		-0.038-0.04	\mathbf{C}		
	Longitudinal Curvature	Long Curv		-0.028-0.04	\mathbf{C}		
	Channel Network Base Level	Ch Net BLevel		301.2 - 974.8	С		
	Vertical Distance to Channel Network	VDistChNet		0-281.86	\mathbf{C}		
)	Negative Openness	NegOp		0.796 - 1.835	С		
	Positive Openness	PosOp		0.809 - 1.726	С		
2	Wind Effect (East)	WEeast		0.756 - 1.323	С		
3	Wind Effect (North-West)	WEnw		0.749 - 1.323	С		
	Down-wind Dilution	DD		0.202 - 0.646	С		
	Cross-wind Dilution	$^{\rm CD}$		0.389 - 1	\mathbf{C}		
5	Corine Land Cover 2006						
	Pastures	clc.231		0-1	F		
	Complex cultivation patterns	clc.242		0-1	F		
	Land principally occupied by agriculture	clc.243		0-1	F		
	Broad-leaved forest	clc.311		0-1	\mathbf{F}		
	Transitional woodland-shrub	clc.324		0-1	\mathbf{F}		
7	Soil Type						
	Dystric Leptosol	LPdy		0-1	F		
	Eutric Leptosol	LPeu		0-1	F		
	Mollic Leptosol	LPmo		0-1	F		
	Dystric Cambisol	CMdy		0-1	F		
	Eutric Cambisol	CMeu		0-1	F		
	Calcaric Cambisol	CMca		0-1	F		
	Dystric Regosol	RGdy		0-1	F		
	Vertisol	VR		0-1	F		
3	Depth	d		0-1.25	Ċ		

Model selection

Model selection was done through the process of 5-fold cross-validation

The folds were stratified according to the three criteria:

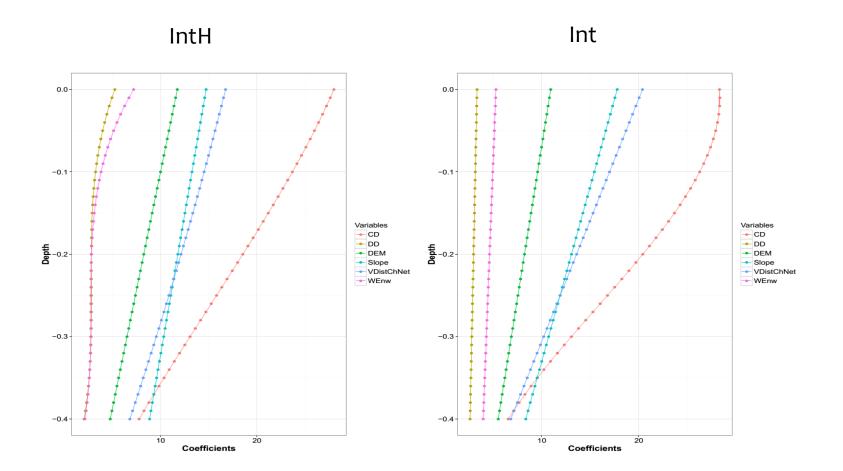
- Geographical locations
- Depth-wise distribution
- Range of observed variable

Model assessment was done through the process of 5-fold nested cross-validation.

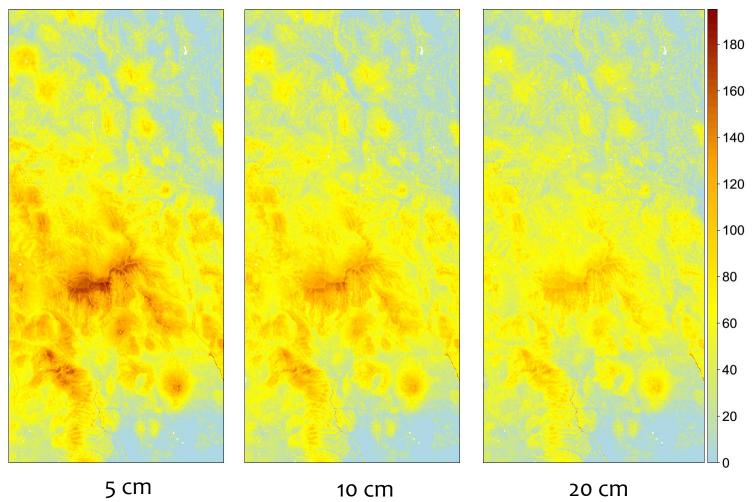
Same sampling strategy

RMSE and R² were used as accuracy measures

Results


Final model (Int)

	As				
variable	me	ie(d)	$ie(d^2)$	$ie(d^3)$	
DEM	7.350	2.996	0	0	
Aspect	1.437	3.095	0	0	
Slope	11.552	5.218	0	0	
TŴI	6.710	0.955	0	0	
ConvInd	0	-2.762	0	3.625	
CrSectCurv	-3.987	-1.052	0	0	
LongCurv	0	0	0	0	
ChNetBLevel	0	0	0	0	
VDistChNet	11.419	7.516	0	0	
NegOp	-0.328	-1.045	0	0	
PosOp	0	0	0	1.785	
WEEast	-1.967	0	0	0	
WEnw	4.404	0.730	0	0	
DD	2.848	0.401	0	0	
CD	15.735	16.558	Ő	-4.231	
clc.231	-22.685	0	1.793	-4.586	
clc.242	0	7.121	0	0	
clc.243	-6.779	0	Ő	Ő	
clc.311	2.289	9.301	0	0	
clc.324	23.371	3.701	0 0	-31.590	
CMca	43.280	0	0	-30.626	
CMdy	0	Õ	0 0	-1.057	
LPdy	Õ	7.883	0	-12.964	
RGdy	-35.590	0	0 0	0	
CMeu	-1.836	0	0	-1.653	
LPeu	-0.197	Õ	Õ	0	
LPmo	0	3.151	0 0	Ő	
VR	8.543	3.554	0	0	
d	15.166	0	0	0	
d^2	0	0	0	0	
d^3	-4.739	0	0	0	


Nested cv results

Model	As			
Model	RMSE	\mathbb{R}^2		
Base	42.80	0.34		
Int	40.67	0.41		
IntH	40.92	0.40		

Cofficients paths:

Maps:

5 cm

Thank you